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1 Abstract

The primary goal of this laboratory is to make holograms in the Fraunhofer
diffraction region (far field), so that the diffracted amplitude is the Fourier
transform of the object. The observation of diffracted light is considered at
a plane yet more distant from the source than in the Fresnel approximation
so that the expanding spherical wavefronts may be accurately modeled as
planar. The mathematical form can be written as follows:
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where the coordinates [x,y] specify location on observation plane. In gist,
we are evaluating the Fourier transform of the rendered approximate Fourier
transform, and thus producing an approximation of the original 2-D planar
object.

2 Procedures

1. Create an N N 2-D complex-valued array filled with zeros. The dimension
of the array should be a power of two, so I took N = 64.
2. Define a 2-D bitonal object over the N-D array.



3. Use a uniformly distributed random-number generator to assign a random
phase to each pixel in the array such that,

phase = (RAND — 0.5) % 21 (2)

4. Compute either the discrete Fourier transform (DFT) or FFT of the
2-D centered complex-valued N -D array with the random phase. This pro-
duces a complex-valued array of two indices in the frequency domain.

5. Compute the magnitude and phase of the FF'T of the array. 6. Normalize
the magnitudes at each pixel by dividing by the maximum of all the magni-
tudes.

7. Select a cell size (8x8) for the hologram; this is the size of the bitonal
cell that will be used to approximate the complex amplitude (magnitude and
phase) of each pixel in the Fourier transform array.

8. Quantize the normalized magnitudes so that the largest value is the linear
dimension of the cell array. For 8x8 cell, multiply the normalized magnitude
by 8 and then round to the nearest whole number.

9. Quantize the phase at each pixel by dividing the calculated angle by 27
radians, multiplying by the linear dimension (8) of the cell, and rounding to
the nearest whole number this will produce phase numbers in the interval
4, +3].

10. Make bitonal apertures to make the 8 8 cell for each pixel in the 64 64
DFT array and display them as corresponding to the quantized magnitude
and quantized phase. The vertical length of the aperture in each cell is the
quantized magnitude of that pixel in the fourier transform array, while the
horizontal position of the aperture is the quantized phase of the pixel of the
fourier transform array.

11. Increase the width of the cells to three pixels, thus making a Lohmann
Type-III hologram. The slot passing the light is replicated in the columns to
either side. The resulting hologram passes more light to the reconstruction,
but the average phase of that cell is still maintained. One of the two addi-
tional columns must wrap around to the other side of the cell.

12. After creating the bitonal CGH, we can check on its success by simu-
lating the optical reconstruction in the Fraunhofer diffraction region, which
requires evaluation of the squared magnitude of the 2-D Fourier transform of
the (N = 512) bitonal CGH array. The display should show multiple replicas
of the original object on either side of the bright DC term at the center of
the reconstruction.



Figure 1: Original Image

13. Print out the bitonal array with an electrophotographic laser or inkjet
printer on overhead transparency film at a small size.

14. Display the hologram by illuminating with a He:Ne laser and view in the
Fraunhofer diffraction region.

3 Results

I took an image of aplhabet ’A’ shown in firgure 1.
The computer generated hologram is shown in figure 2.
Simulation of reconstruction is shown in figure 3.
Reconstruction through laser is shown in figure 4 and 5.

4 Discussion

Explain the number of replicas in the reconstructed image of the hologram.
The replica images in the reconstruction are due to the 88 cell. The inverted
replicas are due to fact that the hologram is real valued, so its Fourier trans-
form is symmetric (even).The reconstructed image is a scaled replica of the
autocorrelation of the source function that has been scaled in both position
and brightness.



Detour-phase CGH

Figure 2: Computer Generated Hologram

2. Consider the limitations of the laser printer. The rectangular apertures
of the hologram are approximated by spots of toner that are fused onto the
transparency film by heat. As the scale of the rendered pattern is reduced,
the spreading out of the toner spots ensures that the desired rectangular
patterns will not be printed. What does this mean for the reconstruction of
the hologram? A sketch of the effect of toner spread on the rendered pattern
may be helpful.

which induces random variations in thickness of the transparency, which
in turn produces random variations in the phase of the transmitted light. 3.
Your reconstruction is probably pretty noisy. What are the possible mecha-
nisms that generate the noise?The 2-D Lohmann hologram of an Archimedean
spiral in a 32 32 array using an 8 8§ cell and a random phase is shown in
Figure 23.32, along with its optical and digital reconstructions. The cell size
ensures that the digital reconstruction is nearly periodic with eight orders
in the horizontal direction and eight replicas in the vertical direction. The



reconstruction. jpg

Figure 3: Reconstructed Image

optical reconstruction was created by placing a laser print of the hologram on
transparency material in an expanded beam from an He:Ne laser and record-
ing the irradiance on a CCD sensor placed at the focus of the beam in the
Fraunhofer diffraction region. The angular separation between the orders is
determined by the pixel pitch in the rendered hologram via the scaling theo-
rem of the Fourier transform; the smaller the pixel pitch, the larger the angle
between orders. The dots in the vertical line in the center are reconstruc-
tions of undiffracted light through the hologram (the DC term); these will be
significant during our discussion of the optical matched filter in the next sec-
tion. Note that these reconstructions are not exactly Dirac delta functions,
but also include other nearby frequencies due to the nonlinear quantization.
The primary reconstructions of the object are located at the orders 1. The
digital reconstruction in Figure 23.32d is rendered as the logarithm of the



Figure 4: Reconstructed Image using laser

squared magnitude to simulate the visual appearance due to the logarithmic
response of the human visual system; the similarity between the optical and
digital reconstructions is evident. The random variations in brightness of
spiral and of background, called speckle, are primarily due to the additive
random phase. The eight replicas of the reconstructions along the vertical
direction in the discrete reconstruction are due to cells 8 pixels tall in the
CGH. Note that an approximate replica of the squared magnitude of the ob-
ject —f [x, y]—2 is reconstructed at order 1, while the reconstruction at order
+1AIl quantizations are nonlinear and produce errors; quantization error in
CGHs produces error in the reconstructions. In a Fraunhofer hologram, the
reconstruction by optical Fourier transformation spreads this quantization
error over the entire space domain, where it appears as noise.

5 Code

I= imread(’C:\Users\sneha\Documents\code\grad-lab-fourier\a. jpg’);
I = imresize(I,[32 32]);

I = imbinarize(I);

I = imcomplement(I);



Figure 5: Reconstructed Image using laser

I = padarray(I,[16 16],0,’both’);
I = double(I(:,:,2));

figure;

imshow(abs(I));

title(’Original object’)

PH = rand([64,64]);

%I = I.xexp(2i*pi*PH);’% add a random phase to the object
I = I.xexp(2i*pi*(PH-(0.5)));

FTS= fftshift(fft2(ifftshift(I)));

A=abs (FTS) ;

figure;

imshow(mat2gray (A)) ;

title(’Object spectrum’)

A=(A./max(max(A)))*8;

A=round(A);’, The amplitude is divided into 8 levels
B=angle ((FTS));

B=(((B./(2%pi))*8));

B=floor(B);’, The amplitude is divided into 8 levels
H=zeros(16);

for m = 1:64



1:64
zeros(8);
a = A(m,n);
b = B(m,n);
if b == -4
P(9-a:8,8:8)=1;
P(9-a:8,4+b+1:b+4+2)=1;
elseif b ==
P(9-a:8,1:1)=1;
P(9-a:8,4+b:b+4+1)=1;
else
P(9-a:8,4+b:b+4+2)=1;
%P(9-a:a,4+b+1:b+4+1)=1;

for n
P

end
if a ==
P =zeros(8);
end
“disp(P)
H(8*(m-1)+1:8%(m-1)+8,8*%(n-1)+1:8*x(n-1)+8)=P;
Jdisp (H)
end

end

figure;

imshow (H)

title(’Detour-phase CGH’)
JReconstruction (FFT)

R=fftshift (ifft2(ifftshift(H)));
figure;

imwrite(H, ’hologram_snehal.tif’);
Jimshow (10 .*mat2gray(abs(R)) ;
imshow (log(abs(R)), [1);
title(’Reconstructed image’)



